Mark schemes

Q1.			
(a)	1.	Phosphorylation of glucose using ATP;	
	2.	Oxidation of <u>triose phosphate</u> to pyruvate; Accept removal of hydrogen from triose phosphate for oxidation.	
	3.	Net gain of ATP; Accept any description that indicates a net gain e.g., 4 produced, 2 used.	
	4.	NAD reduced; Accept NADH/NADH₂/NADH + H⁺ produced. Accept all mark points in diagrams.	4 max
(b)	1.	Less/no reduced NAD/coenzymes	
		OR	
		Fewer/no hydrogens/electrons removed (and passed to electron transfer chain); Accept less/no FAD reduced.	
	2.	Oxygen is the final/terminal (electron) acceptor;	2
Q2.			
(c)	1.	Regenerates/produces NAD OR oxidises reduced NAD; <i>Reject NADP and any reference to FAD.</i> <i>Accept descriptions of oxidation e.g. loss of hydrogen.</i>	
	2.	(So) glycolysis continues; Accept description of glycolysis e.g. glucose to pyruvate. Accept 'for oxidising/converting triose phosphate to	

2

[9]

[6]

Q3.

(a) (So the) oxygen is used/absorbed/respired;

pyruvate'.

1

(b)	1.	Anaerobic respiration produces carbon dioxide;
	2.	Increase in pressure/volume (of gas); Reference to either volume or pressure required for the mark
(c)	1.	Correct answer in range of 4.9 × 10 ⁻⁴ to 4.91 × 10 ⁻⁴ = 2 marks ;; Accept any equivalent mathematical representation of this answer
	2.	Incorrect answer buts shows division by 24 = 1 mark OR Incorrect answer but shows a number from 1175 to 1178 (ignore position of decimal point, standard form and any numbers that follow) = 1 mark ; OR Incorrect answer but show the number 49 (ignore position of decimal point, standard form and any numbers after 49) = 1 mark ; 2
(d)	Larg	e range/difference/increase in numbers; Accept reference to exponential (increase) Ignore if the answer only refers to numbers being high Ignore to 'fit on the scale'
(e)	Decr OR Incre	rease/no glucose/substrate ease in ethanol/carbon dioxide/acidity; Accept decrease/no oxygen as Figure 2 is not linked to Figure 1 . Accept competition for glucose/oxygen. Accept any named sugar Accept decrease in pH Accept increase in toxins Ignore food/nutrients
(f)	1.	Correct answer of 298000 or 297766 or 297765.59 or 296826 = 2 marks;; Accept: any equivalent answer with appropriate rounding e.g. 2.98 × 10 ⁵ , 29.78 × 10 ⁴ etc.
	2.	Incorrect answer but working shows $2000 \times 2.72 = 1 \text{ mark}$; OR Incorrect answer but working shows $2.72^{0.5 \times 10} / 2.72^5 / e^{0.5 \times 10} / = 1$ mark

[9]

Q4.

- (b) 1. Less / no malonyl-CoA;
 - 2. (More) fatty acids transported / moved into mitochondria;
 - 3. Respiration / oxidation of fatty acids provides <u>ATP;</u>
 - 1. 'Inhibition of malonyl-CoA' on its own is not enough but accept production of malonyl-CoA is inhibited.
 - 2. Accept: 'transport of fatty acids into mitochondria is not inhibited'.
 - 2. Ignore: method of entry.
 - 3. Accept: for respiration any stage of aerobic respiration e.g. Krebs (cycle), link (reaction) etc.
 - 3. Reject: production of energy, **but** accept production of energy in the form of <u>ATP</u>.
 - 3. Accept: acetyl CoA can enter Krebs cycle / mitochondria to provide ATP.

[7]

3

Q5.

(a)	1.	Equilibrium reached. <i>Accept equilibrate</i>	
	2. 3.	Allow for expansion / pressure change in apparatus; Allow respiration rate of seeds to stabilise. Ignore seeds acclimatise	3
(b)	1.	Optimum temperature / temperature for normal growth of	
	2.	(Optimum temperature) for enzymes involved in respiration.	2
(c)	1. 2. 3.	Oxygen taken up / used by seeds; CO ₂ given out is absorbed by KOH (solution); Volume / pressure (in B) decreases.	3
(d)	0.97	75 / 0.98. If incorrect, 0.26 × 6 / or incorrect numbers divided by 1.6 for 1 mark	2

Q6.			
(a)	1.	Increases dissociation of oxygen; Accept unloading/ release/reduced affinity for dissociation	
	2.	For aerobic respiration at the tissues/muscles/cells	
		OR	
		Anaerobic respiration delayed at the tissues/muscles/cells	
		OR	
		Less lactate at the tissues/muscles/cells;	2
(b)	1.	(Time) 10 minutes;	
	2.	(Ratio) 1.6875(:1);	
	Allow	1 mark for correct ratio calculated from wrong time For the ratio accept any correct rounding	2
(c)	1.	Increase in breathing (rate); Award mark points 1 and 2 OR 3 and 4 Allow more breaths per minute Reject more BPM	
	2.	Similar/same pCO ₂ per breath, but more breaths;	
		OR	
	3.	Increase in tidal volume; Accept each breath is deeper	
	4.	Similar/same pCO ₂ per breath, but increased volume per breath;	2
(d)	Seco	ond box ticked (Muscle fibres have a limited amount of phosphocreatine.)	1
(e)	1.	More acetylcoenzyme A would enter the Krebs cycle;	-
	2.	(So) the Krebs cycle generates (more) reduced coenzymes	
		OR	
		(So more) reduced coenzymes pass their electrons to the electron transfer chain; Accept examples of reduced coenzymes Reject production of reduced NADP or NADPH ₂	

AQA Biology A-Level - Respiration MS

- 3. (So more) ATP would be produced; *idea for more is required once*
- Athletes could build (slow) muscle (fibres) without exercising; *Ignore 'develop (slow) muscle (fibres) at rest' as in stem of question Accept description of not exercising, eg without training*
- (Having more) slow muscle (fibres) would increase endurance; Accept descriptions of endurance in terms of delayed onset of anaerobic respiration

4 max

- (f) 1. (EPO) causes blood to thicken; Accept descriptions of thickening, eg more viscous
 - 2. (The thickened blood) could block the coronary arteries

OR

(The thickened blood) slows blood flow

OR

(The thicker blood) could cause clots; Reject atheroma/plaque (forms) Accept could cause thrombus/embolus

2

(g) 1. Some cyclists will gain a bigger advantage/increase

OR

Cyclists with a haematocrit of 50% would not be able to gain an advantage;

Accept use of the data, or suitable calculations, eg some may have an 8% increase, others 0%

Some cyclists might naturally have a haematocrit over 50% (and so not be allowed to compete)

2. There are health risks (associated with) taking EPO;

Accept dangerous side-effects of taking EPO, or examples of health risks

2 [15]

Q7	′ .			
	(a)	1.	Line graph with rate on y axis and temperature on x axis and linear scales;	
		2.	Values calculated to appropriate sf;	
		3.	Rates correctly calculated and plotted, with ruled line connecting	
				3
	(b)	8 or	9;	1
	(c)	1.	Determine the area under the curve;	1
	(d)	1.	Enzymes / metabolism faster;	
		2.	Higher rate of respiration and carbon dioxide production / release;	
		3.	Spiracles open more often / remain open to excrete / get rid of carbo dioxide / get more oxygen;	on
			Note – explanation required	3

[8]